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Abstract

A Functional Perturbation Method (FPM) has been recently developed for the analysis of stochastically heteroge-
neous structures, for which the heterogeneity scale is not negligible relative to the macro dimensions. The FPM is based
on considering the target function (here, the buckling load P) as a functional of the stochastic morphology. The target
function is written as a functional perturbation series near a convenient homogeneous property, usually stiffness (K) or
compliance (S). Thus, the accuracy depends on the choice of the property around which the perturbation is carried out.
An Optimized FPM (OFPM) is presented here, which concentrates on finding a property h(K), which is a function of K
or S, such that the target function converges faster. This is accomplished by looking for h(K) which minimizes (or nulls,
if possible) the second term in the functional perturbation series. Besides its improved accuracy, h has also a dual mean-
ing, which is related to the notion of ‘‘effective’’ property. However, the ‘‘effectiveness’’ is weak, since the property is not
‘‘purely material’’, but depends on external loading shapes. An example of a buckling problem is examined in detail, for
which h is found analytically as a simple power of K, which directly depends on morphology. Comparing the new
OFPM with previous FPM and numerical Monte Carlo—Finite Element results shows the desired improved accuracy.
The advantages of the OFPM are then shown and discussed.
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1. Introduction and motivation

In recent studies (Altus, 2001, 2003a,b; Givli and Altus, 2003), a new Functional Perturbation Method
(FPM) has been developed, which predicts the mechanical probabilistic behavior of stochastically hetero-
geneous beams. This includes random properties such as deflections, buckling loads, beam�s strength and
fracture energy. Their statistical averages and variances have been found in terms of morphology, loading
and geometry. These properties will be termed ‘‘target functions’’, for convenience.

The analysis of structures with stochastic material properties has been a major subject of research for
more than three decades. Much of the effort is devoted to implementing the randomness into the Finite Ele-
ment Method (SFEM) (Ghanem and Spanos, 1991; Deodatis, 1991; Graham and Siragy, 2001; Elishakoff
and Ren, 2003; Frantziskonis and Breysse, 2003, to name a few). In all of the existing methods, the random
properties are parametrically dependent, i.e., the stochastic nature of the problem is transformed to an
associated structure with finite number of random variables.

The FPM is based on treating the target functions as functionals of material heterogeneity (morphology).
Then, they are functionally expanded as a Fréchet series around an arbitrarily chosen uniform (associated
with a homogeneous) material property. Therefore, the average of the target functions for the heterogene-
ous case is obtained as a series in which the first term (zero perturbation order) is the solution of a homo-
geneous structure having material property which is equal to the average value of the chosen property for
the heterogeneous case.

Although the method is analytical, the accuracy of the solution is affected by three different sources of
approximations: (a) The beam deflection shape functions which are chosen to cover the maximum possible
solution subspace (i.e., Bernoulli, Timoshenko or any other high order theories), (b) The number of terms
used in the functional perturbation series, and (c) The specific homogeneous material property, around
which the FPM is executed. While the first two sources come from ‘‘common’’ accuracy related problems,
which are treated extensively in the literature, the third involves functional differentiations and is directly
related to the FPM itself. Thus, the third source is the prime subject of this study. It will also be shown
how the last two subjects are interrelated.

A good demonstration of the importance of choosing the proper homogeneous property is through the
solution of the buckling problem (Altus and Totry, 2003b). Similar to other beam problems, it is ‘‘natural’’
to execute the functional perturbation either around the average cross section stiffness hKi or compliance
hSi of the beam. However, examining the two limit morphological cases, associated with very large or very
small moduli correlation lengths (roughly, the typical grain size), it is easy to show that hKi and hSi are the
values giving the exact average target function (buckling load) for infinitely large and infinitely small grains,
respectively. Thus, it is clear that for a finite grain size the exact property must be neither of the two but
some function (h) of S or K and is morphology dependent. Finding this function by an Optimized Func-
tional Perturbation Method (OFPM) is the main goal of this study. To the best of our knowledge, this type
of optimization has not been considered before. The reason may be that effective properties are practically
related to infinite bodies (microstructure sizes much smaller than global dimensions).

Apart from its improved accuracy, the OFPM serves a dual goal, which is even more fundamental, and is
related to the notion of effective material property, such as moduli. By definition, the value of the target
function of a structure made from a homogeneous material with the effective property is equal to the value
of the target function of the same structure made from a heterogeneous material. However, this ‘‘classical’’
definition is for heterogeneity on a very small scale, i.e., when grain size is negligible compared to the macro
dimensions. In this case, the target function is practically not random. However, in the present study the
grains are not small and the definition of effective property is naturally associated with the average target
function of the heterogeneous structure.

Returning to the series solution of the target function, in which the first term is the solution for a cor-
responding homogeneous case, i.e.,
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hPfSðxÞgi ¼ P hhðSÞi þ � � � ð1:1Þ
It is seen that the average of the chosen material property (h) can be also considered as a first approxima-
tion for an effective property. Thus, the OFPM also serves to find a better estimate for the effective moduli
of heterogeneous structures with finite grain size which may be very useful for design of stochastically het-
erogeneous structures. Note however, that contrary to the infinite body case, this is an effective property
which will be dependent on morphology and loading geometry. It is also realized, that hKi, hSi or hh(K)i
are all one point probability functions which can be found from morphological data with the same
effort.
2. Theoretical considerations

Consider a mechanical structure, for which it is desired to find a property P (say, a critical load of some
kind). The structure is made from a randomly heterogeneous material of property S(x), which is statistically
stationary. Let us consider a one dimensional case for easy insight.

Assume that P can be written as an explicit functional of S. To find the statistical characteristics of P,
the Functional Perturbation Method (FPM) is used (Altus and Givli, 2003a; Altus and Totry, 2003b).
A Fréchet expansion around the ensemble average of S is written as:
PfSðxÞg ¼ P hSi þ P ;S1 � S0
1 þ

1

2
P ;S1S2 � �S0

1S
0
2 þ � � � ; ð2:1Þ
(*) is the common convolution symbol, {} is for a functional relation and all functional derivatives are
taken at hSi. Also,
S0 ¼ S � hSi; P ;S ¼
dP

dSðxÞ ; P ;S1 ¼
dP

dSðx1Þ
; ð2:2Þ
etc. The statistical (ensemble) average of P is then:
hPi ¼ P hSi þ
1

2
P ;S1S2 � �hS0

1S
0
2i þ � � � ð2:3Þ
Each additional term in the series contains more detailed information about the stochastic properties of
S(x). For example, hS0

1S
0
2i is the two point probability function (2pp) which usually contains a typical

‘‘grain size’’ measure k, defined by:
hS0
1S

0
2i � 1 ¼ 2khS02

1 i: ð2:4Þ

The above is not unique, and other ‘‘sizes’’ can be defined. However, all definitions must have the common
property, that when the microstructure is self similarly enlarged by an arbitrary factor, k should also be
changed by the same factor.

Other statistical properties of P, such as Var(P), can be found similarly:
hP 02i ¼ P ;S1 � hS0
1 � S0

2i � P ;S2 þ � � � ð2:5Þ

When P is not given explicitly, the functional derivatives of P in (2.1) are found successively as follows.
Assume an implicit relation of the form
UðPfSðxÞgÞ ¼ 0: ð2:6Þ

Apply the zero order (homogeneous) substitution:
UðPfhSigÞ ¼ 0 ð2:7Þ
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From which P(hSi) is found. Then, differentiate (2.6) functionally to obtain:
U;PP ;S1 jhSi ¼ 0: ð2:8Þ
Since U,P (ordinary derivative) at hSi is a known function of P(hSi), we can use the result from (2.7), sub-
stitute in (2.8) and find P ;S1ðhSiÞ (functional derivative). Differentiating (2.8) again
ðU;PPP ;S1P ;S2 þ U;PP ;S1S2ÞhSi ¼ 0: ð2:9Þ
Using the results of (2.7) and (2.8), P ;S1S2ðhSiÞ can be found. Continuing in this manner, it is straightforward
to find any desired functional derivative of P at hSi.

The function S(x), which is taken here as material moduli or compliance of elastic heterogeneous struc-
ture, is the one which regularly appears in the original formulation (governing equations) of the non-ran-
dom problem. However, the choice of functionally expanding through S or any other function h(S) is still at
our disposal. This is our basis for the OFPM.

2.1. Optimization for improved accuracy

Consider a practical case when morphological data is given up to the two point moduli probability,
therefore only two terms of (2.3) are completely available. Our aim is to find h(S) such that, when expanded
as (2.3) by h, the magnitude of the second term is minimal, or, as will be shown later in the example, causes
the second term to vanish. Then, if the functional series converges monotonically, the first two terms are
expected to yield the most accurate value of hPi for this given (limited) morphology data. Expansion of
P through h yields:
hP i ¼ P hhi þ
1

2
P ;h1h2 � �hh

0
1h

0
2i þ � � � ffi P hhi þ

1

2
P ;h1h2 � �hh

0
1h

0
2i: ð2:10Þ
We ask for the property h(S) such that
P ;h1h2 � �hh
0
1h

0
2i ¼ 0: ð2:11Þ
If there is no solution for (2.11), we will ask for a minimization condition. To write (2.11) in terms of S, the
following functional differentiations are needed:
P ¼ PfSðhðxÞÞg ! P ;h1 ¼ P ;S1S1;h1 ð2:12Þ

and
P ;h1h2 ¼ P ;S1h2S1;h1 þ P ;S1S1;h1h2 ¼ P ;S1S2S2;h2S1;h1 þ P ;S1S1;h1h1d12: ð2:13Þ

Note that S,h is a regular derivative, since S is taken here as a function (and not functional) of h. The fol-
lowing relation and notation has been used in the above
S1;h1h2 ¼ S1;h1h1d12; d12 � dx1x2 � dðx1 � x2Þ; ð2:14Þ

where d is the Dirac singular operator, defined as
d12 ¼
dSðx1Þ
dSðx2Þ

� S1;S2 ¼
dhðx1Þ
dhðx2Þ

� h1;h2 : ð2:15Þ
Substitution of (2.13) in (2.11) we note that for a statistically homogeneous distribution
ðP ;S1S1;h1h1d12Þ � �hh
0
1h

0
2i ¼ ðP ;S1S1;h1h1Þ � hh

02
1 i ¼ hh02i � ðP ;SS1;hhÞ � 1: ð2:16Þ
The condition (2.11) is thus
P ;h1h2 � �hh
0
1h

0
2i ¼ ðP ;S1S2S2;h2S1;h1Þ � �hh

0
1h

0
2i þ ðP ;S1S1;h1h1Þ � hh

02
1 i ¼ 0: ð2:17Þ
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11�1(x1) is a uniform function of unit strength along the x1 coordinate. A normalized two point probability
correlation of h is defined by
h�h01�h
0
2i ¼

hh01h
0
2i

hh021 i
: ð2:18Þ
Then, (2.17) is written as
ðP ;S1S2S2;h2S1;h1Þ � �h�h
0
1
�h
0
2i þ ðP ;S1S1;h1h1Þ � 11 ¼ 0: ð2:19Þ
To write (2.19) as a net differential equation with S(h) as unknown, we expand
h0 ¼ h� hhi ¼ hhSi þ h;SS
0 þ 1

2
h;SSS

02 þ � � �
� �

� hhSi þ
1

2
h;SShS02i þ � � �

� �
¼ h;SS

0 þ 1

2
h;SSðS02 � hS02iÞ þ � � � : ð2:20Þ
Then
hh01h
0
2i ¼ h;S1hS0

1S
0
2ih;S2 þ OðS03Þ: ð2:21Þ
Since (regular) derivatives with respect to S are taken at hSi,

h;S1 ¼ h;S2 ¼ h;S ð2:22Þ
are all constants, and not functions of space. Therefore, substituting (2.21) in (2.19) and using (2.22) we
obtain:
ðP ;S1S2S2;h2S1;h1Þ � �hS
0
1S

0
2i þ ðP ;S1S1;h1h1Þ � 11 ¼ OhS03i ffi 0: ð2:23Þ
Since the whole calculation is confined to the second order analysis, neglecting the third order term
will not affect the overall accuracy. The above constitutes a non-linear differential equation for S(h)
for any morphology. Nevertheless, it is interesting to consider further a less general case, for which the
two-point probabilities can be decoupled into two parts: ‘‘micro-material’’ and ‘‘micro-geometry’’, in the
form:
hS0
1S

0
2i ¼ hS02

1 i � pð2Þðj x2 � x1 jÞ: ð2:24Þ

A common example for this case is when morphology is based on grains with uniform moduli inside each
grain but exhibits no correlation between them. There, p(2) is the probability that two points will ‘‘fall’’ in
the same grain, which is a pure geometrical property (Kröner, 1986). It is seen from (2.18) and (2.24) that in
such cases, the normalized 2pp�s of h and S are identical:
h�h01�h
0
2i ¼ hS0

1S
0
2i: ð2:25Þ
Then, for this particular case, (2.23) is exactly zero.
Recall that since all functional derivatives in (2.23) are at hhi, expressions such as S1;h1h1 and S1;h1 are not

functions of space, and the decoupling of the form
ðP ;S1Þhhi ¼ aðx1Þ � AðShhiÞ; ðP ;S1S2Þhhi ¼ bðx1; x2Þ � BðShhiÞ ð2:26Þ
is permitted. Using the above, (2.23) can be written in the following form, after space integrations:
½g � G;SðShÞ � ðSh;hÞ2 þ GðShÞ � Sh;hh�hhi ¼ 0: ð2:27Þ
G is a known function of S(h) and g is a morphology dependent integration coefficient which can be cal-
culated for any specific case. Dividing (2.27) by S,h and noting that
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Sh;hh

Sh;h
¼ ½LnðSh;hÞ�;h; G;SSh ¼ G;h; ð2:28Þ
we can integrate by h and obtain the simple relation:
Sh;h ¼ C � G�g: ð2:29Þ

C is a constant of integration. Note that G(S) depends on the type of problem, while g is a pure functional
of morphology.

Using the stationary property and the averaging definition, it is clear that the function which relates S(x)
to h(x) is identical to the one which relates hSi to hhi:
Shhi ¼ eF ½hhi� ! Sh ¼ eF ½h�: ð2:30Þ
Therefore, the solution of (2.30) provides us with S(h) too.
Knowing eF and having the statistical data of S, we have:
S ¼ eF ðhÞ ! h ¼ eF �1ðSÞ: ð2:31Þ

Then
hhi ¼ heF �1ðSÞi ! SðhhiÞ ¼ eF heF �1ðSÞi: ð2:32Þ

Knowing eF from (2.27) and using (2.31), the desired new parameter is obtained. Alternatively, (2.32b) can
be used directly for calculating the first term of (2.10) and obtain an optimized estimation for hPi.
2.2. Morphology based effective moduli

Traditionally, effective moduli is a property related to the response of a homogeneous material (and/or a
structure) which, when used for a corresponding heterogeneous problem, yields the same response. Usually,
it is related to the case where the microscale (grain size etc.) is much smaller than any relevant macro
dimension, and therefore the macro response is not random. Denote this effective property by h(eff), we
have
P ¼ P hSi þ
1

2
P ;S1S2 � �hS0

1 � S0
2i þ � � � ¼ PSðhðeffÞÞ: ð2:33Þ
In our case, the microscale is not negligibly small, and it is natural to generalize the concept of ‘‘effective-
ness’’ to the average property (here P), i.e.,
hP i ¼ PSðhðeffÞÞ: ð2:34Þ
Thus, by the two expansions (2.3) and (2.10), hSi and hhi can be considered as two approximations for the
effective property:
hP i ffi P hSi ffi PSðhhiÞ ffi PSðhðeffÞÞ: ð2:35Þ
We see that hSi can be considered as a zero order approximation for the effective moduli while hhi, for
which the second term in (2.10) vanishes, is a more accurate, second order estimate. From (2.27) and
(2.30), hhi depends on grain size and loading, and therefore it is not a ‘‘pure’’ material property in the clas-
sical sense. Continuing the above method for higher order approximations (i.e. finding the proper moduli
for which any number of desired terms vanishes simultaneously) is a more complex problem which is under
current study and will not be discussed here.

In the next chapter, a demonstrating example of a buckling problem is solved by the OFPM in
details.
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3. Buckling of stochastically heterogeneous beams by the FPM

Consider a stochastically heterogeneous beam under compression. Heterogeneity is confined to the lon-
gitudinal direction only. A special feature of the problem is the fact that the exact average buckling load for
very small or very large grains is based on hSi or hKi respectively, and it is clear that different functions of
these properties should be used for finite grain sizes. Buckling problem have been studied by Garrett (1992),
Zhang and Ellingwood (1995) and Elishakoff (2000), which used the stiffness EI = S�1 as the reference
material property for all morphology range. Recently, Altus and Totry (2003b) studied the effect of using
each of the two on the accuracy of the solution. However, an optimized function, which is based on mor-
phology, has not been considered yet.

A brief summary of the solution procedure and final results of the buckling problem by the FPM is given
herein. More details can be found elsewhere (Altus and Totry, 2003b), although in a less general form. This
chapter is therefore a modification and is limited to the minimum exposure which will be needed later for
the OFPM analysis.

Let a heterogeneous beam be of length L, simply supported at both ends, and loaded by a compression
force P. E(x) and I(x) are the non-uniform modulus and inertia, respectively. The bending stiffness (K) and
compliance (S) are:
KðxÞ ¼ EIðxÞ; SðxÞ ¼ ðKðxÞÞ�1
: ð3:1Þ
x is the normalized (by L) longitudinal coordinate, (0 < x < 1).
Assume a buckling deflection of the form:
wðxÞ ¼ Að1Þwð1ÞðxÞ þ Að2Þwð2ÞðxÞ ¼ Að1ÞSinðpxÞ þ Að2ÞSinð2pxÞ ð3:2Þ
where A(1) and A(2) are functionals of morphology. w(1)(x) is the exact shape function for the homogeneous
case and w(2) permits a non-symmetric part corresponding to the specific inhomogeneity of each beam. It
should be noted that (a) the chosen wavelength of w(2) was shown to provide the best accuracy (Altus and
Totry, 2003b), and (b) A(1) is a functional of heterogeneity too. More terms can be added for better
accuracy.

The internal bending moment distribution M(x) and the elastic energy U are:
MðxÞ ¼ PwðxÞ; U ¼ 1

2
M2 � S: ð3:3Þ
Applying the minimum potential energy principle, the condition for the onset of instability yields:
P
PS � ðwð1ÞÞ2 � p2=2 PS � ðwð1Þwð2ÞÞ
PS � ðwð1Þwð2ÞÞ PS � ðwð2ÞÞ2 � 2p2

" #
Að1Þ

Að2Þ

( )
¼ 0: ð3:4Þ
A solution of (3.4) yields a quadratic characteristic equation for the buckling load P:
UðP Þ ¼ P 2ððS � ðwð1ÞÞ2ÞðS � ðwð2ÞÞ2Þ � S � ðwð1Þwð2ÞÞ2Þ

� P
p2

2
ð4S � ðwð1ÞÞ2 þ S � ðwð2ÞÞ2Þ þ p4 ¼ 0; ð3:5Þ
Eq. (3.5) is a functional equation for P{S(x)} which is a realization of (2.6). We choose an uncoupled mor-
phology of the exponential type (2.24):
hS0
1S

0
2i ¼ hðS0Þ2i � exp � j x2 � x1 j

k

� �
; S

0 ¼ S0=hSi: ð3:6Þ
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Applying the FPM to (3.5) and (3.6) by using the procedure outlined in (2.6)–(2.9) yields:
hPSi ¼
hPSi
P hSi

¼ 1þ hS02i � f ðkÞ ¼ 1þ q2
S � f ðkÞ: ð3:7Þ
qS is the Coefficient of Variation (COV) of S and
f ðkÞ ¼ f ð1ÞðkÞ � f ð2ÞðkÞ ð3:8Þ

where,
f ð1ÞðkÞ ¼ k
3þ 20p2k2 þ 32p4k4ð1� kð1� expð�k�1ÞÞÞ

ð1þ 4p2k2Þ2
; ð3:9Þ

f ð2ÞðkÞ ¼ k
2þ 30p2k2 þ 118p4k4 � 128p4k5ðexpð�k�1Þ þ 1Þ þ 90p6k6

3ð1þ 10p2k2 þ 9p4k4Þ2
: ð3:10Þ
f(1) and f(2) are contributions related to the two shapes of A(1) and A(2) in (3.2), respectively. The COV of
P(S) is obtained by (2.5)
qPðSÞ ¼
ðVarðPSÞÞ1=2

hPSi
¼ qSðf ð1ÞÞ1=2: ð3:11Þ
If the FPM is executed with K as a basis, we obtain:
hPKi ¼
hPKi
P hKi

¼ 1þ hK 02i � ðf ðkÞ � 1Þ ¼ 1� q2
K � ð1� f ðkÞÞ ð3:12Þ
and
qPðKÞ ¼
ðVarðPKÞÞ1=2

hPKi
¼ qKðf ð1ÞÞ1=2: ð3:13Þ
It can be easily shown, that each of the two solutions is exact for a different limit case:
f ðk ! 0Þ ¼ 0 ) hPSi ¼ P hSi; qPðSÞ ¼ 0; ð3:14Þ

f ðk ! 1Þ ¼ 1 ) hPKi ¼ P hKi; qPðKÞ ¼ qK : ð3:15Þ
4. Implementing the optimized functional perturbation method (OFPM)

Assume that S is a function of the property h(x), from which we obtain an average buckling load with
improved accuracy:
S ¼ SðhÞ ¼ KðhÞ�1
: ð4:1Þ
Taking U from (3.5) and following the OFPM procedure outlined in chapter 2, the zero order equation for
P is found by
UðPfShhigÞ ¼ 0: ð4:2Þ
We obtain two solutions of which only the smallest is relevant:
P ð1Þ ¼ PSðhhiÞ ¼
p2

Sjhhi
; P ð2Þ ¼ 4p2

Sjhhi
: ð4:3Þ
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Now find P ;S1 from (2.8), insert in (2.12) and obtain (see Appendix for functional differentiation details):
P ;h1 jhhi ¼ �2p2
S;hjhhi
Sjhhi2

ðwð1Þ
x1
Þ2 ð4:4Þ
Similarly, use (2.9) to obtain P ;S1S2 , insert in (2.13) and solve for P ;h1h2 using (4.3) and (4.4) to obtain:
P ;h1h2 jhhi ¼
d2P

dh1dh2
jhhi: ¼

2p2

3Sj3hhi

S;hj2hhið12ðwð1Þ
x1
Þ2ðwð1Þ

x2
Þ2 � 4ðwð1Þ

x1
wð2Þ

x1
Þðwð1Þ

x2
wð2Þ

x2
ÞÞ

�3SjhhiS;hhjhhiðwð1Þ
x1
Þ2dx1x2

" #
: ð4:5Þ
Note the abbreviations
ðwð1Þ
x1
Þ2 � wð1Þ

x1
wð1Þ

x1
� wð1Þðx1Þ � wð1Þðx1Þ ð4:6Þ
etc., and
S;hjhhi � S;hðxÞjhhi � S;h1 jhhi � S;h2 jhhi: ð4:7Þ
Now insert the exponential 2pp from (3.6) into (4.5) and find h(S) which nulls the second term:
½S;hj2hhi 12ðwð1Þ
x1
Þ2ðwð1Þ

x2
Þ2 � 4ðwð1Þ

x1
wð2Þ

x1
Þðwð1Þ

x2
wð1Þ

x2
Þ

� �
� 3SjhhiS;hhjhhiðwð1Þ

x1
Þ2dx1x2 � � �hh

02i

� exp � j x2 � x1 j
k

� �
¼ 0: ð4:8Þ
Integration over the space (x) yields
gðkÞS;hj2hhi � SjhhiS;hhjhhi ¼ 0; ð4:9Þ
where
gðkÞ ¼ 2ðf ð1Þ � f ð2ÞÞ: ð4:10Þ
Eq. (4.9) offers a relation between S and h through k in the form shown in (2.27). Note that the differen-
tiations in (4.9) are ordinary (not functional).

For further progress, it is important to make the following observation. Each specific 1pp distribution of
S yields a different hSi, and therefore a different hhi. Consequently, in order for (4.9) to be valid for any
distribution of S, it must hold for any hhi not only for a specific case. We can therefore generalize (4.9)
and write
gðkÞ � S2
;h � S � S;hh ¼ 0: ð4:11Þ
Dividing (4.11) by SS,h
gðkÞ S;h

S
� S;hh

S;h
¼ ½gðkÞ lnðSÞ � lnðS ;hÞ�;h ¼ 0: ð4:12Þ
Integrating (4.12b) with respect to h
gðkÞ lnðSÞ � lnðS;hÞ ¼ ln
SgðkÞ

S;h

� �
¼ C ) S;h

SgðkÞ ¼ C1: ð4:13Þ
Integrating (4.13) again
SðhÞ ¼ ½�mðkÞðC1hþ C2Þ��
1

mðkÞ; ð4:14Þ
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where
mðkÞ ¼ gðkÞ � 1 ¼ 2f � 1 ¼ 2ðf ð1Þ � f ð2ÞÞ � 1: ð4:15Þ

Before examining C1 and C2, note that in order to calculate hPi from (2.10), we need S(hhi) since
P hhi � P hhðSðhÞÞi ¼ eP SðhhiÞ: ð4:16Þ
This can be found without using Ci as follows. Substitute hhi in (4.14)
SðhhiÞ ¼ ½�mðkÞðC1hhi þ C2Þ��
1

mðkÞ: ð4:17Þ

Then, extract h from (4.14) and average:
hhi ¼ � 1

C1

hS�mðkÞi
mðkÞ þ C2

� �
: ð4:18Þ
Extracting hhi from (4.17) and comparing with (4.18)
SðhhiÞ ¼ hS�mðkÞi�
1

mðkÞ: ð4:19Þ

Thus, P(S(hhi)) in (2.10) is found without explicitly finding Ci. By (4.3a) and using (4.19) and (4.1), the
mean buckling load is obtained by the OFPM:
hP i
p2

¼
P jhhi
p2

¼ SðhhiÞ�1 ¼ hS�mðkÞi
1

mðkÞ ¼ hKmðkÞi
1

mðkÞ: ð4:20Þ
The above is a realization of the general form in (2.32b).
The power m(k), calculated from (3.9), (3.10) and (4.15) is shown in Fig. 1. The logarithmic scale helps in

spanning the whole range of k. As expected, m is an asymptotic function between �1 and 1, with a ‘‘tran-
sition’’ region when k is in the order of 1.

C1 and C2 are also functions of k, but both are irrelevant for finding hPi. The reason is that both depend
on the boundary conditions of (4.11). However, the LHS of (4.11) is proportional to (2.11) which must van-
ish. Therefore, Ci can be arbitrary and the solution (4.14) comprises a family of functions.

Nevertheless, Ci can be found in the limit cases. From (3.14), (4.14) and (4.15):
mðk ! 0Þ ¼ �1 ) SðhÞ ¼ h ¼ C1hþ C2 ð4:21Þ
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Fig. 1. The power m as a function of grain size k.
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Therefore
C1ðk ¼ 0Þ ¼ 1; C2ðk ¼ 0Þ ¼ 0: ð4:22Þ

Similarly, from (3.15), (4.14) and (4.15):
C1ðk ! 1Þ ¼ �1; C2ðk ! 1Þ ¼ 0: ð4:23Þ

This, however, does not affect (4.20).

The coefficient of variation of Ph, calculated using (2.5) is:
qPðhÞ ¼
VarðP hÞ
P hhi

2

 !1=2

¼
2p2S;hjhhi
Sjhhi2

ððwð1Þ
x1
Þ2 � hh01h

0
2; i � ðwð1Þ

x2
Þ2Þ

1
2 � p2

Sjhhi

" #�1

¼
S;hjhhi
Sjhhi

½VarðhÞf ð1ÞðkÞ�1=2: ð4:24Þ
Using (4.17) and (4.22):
S;hjhhi
Sjhhi

¼ C1hS�mi�1 ¼ C1hKmi�1 ð4:25Þ
and
VarðhÞ ¼ hh2i � hhi2 ¼ hS�2mi � hS�mi2

C2
1m2

¼ hK2mi � hKmi2

C2
1m2

: ð4:26Þ
Substituting (4.25) and (4.26) in (4.24)
qPðhÞ ¼ hS�mi�1 hS�2mi � hS�mi2

m2
f ð1Þ

" #1
2

¼ hKmi�1 hK2mi � hKmi2

m2
f ð1Þ

" #1
2

: ð4:27Þ
Thus, q(P) is also independent of Ci.
5. Comparison with previous studies

For comparison purposes, it is convenient to follow the data and results considered in Altus and Totry
(2003b) and Zhang and Ellingwood (1995). A probability density function pK(K), which is uniform between
two extreme values (1 � D) and (1 + D) is chosen in such a way that qK = 0.3, i.e.,
pK ¼
1=2D ð1� D < K < 1þ DÞ
0 elsewhere

� �
: ð5:1Þ
Therefore,
hKi ¼ 1; hK 02i ¼ hK2i � hKi2 ¼ D2

3
¼ 0:09 ! D ¼ 0:5196 ð5:2Þ
and
hKmi ¼
Z 1þD

1�D

Km

2D
dK ¼ ð1þ DÞ1þm � ð1� DÞ1þm

2Dð1þ mÞ ; ð5:3Þ
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hK2mi ¼
Z 1þD

1�D

K2m

2D
dK ¼ ð1þ DÞ1þ2m � ð1� DÞ1þ2m

2Dð1þ 2mÞ : ð5:4Þ
Substituting (5.3) and (5.4) in (4.20) and (4.24)
hP i
p2

¼ hKmi
1
m ¼ ð1þ DÞ1þm � ð1� DÞ1þm

2Dð1þ mÞ

 !1
m

: ð5:5Þ
For q we obtain
qPðhÞ ¼
ð1þ DÞ1þm � ð1� DÞ1þm

2Dð1þ mÞ

" #�1

� ð1þ DÞ1þ2m � ð1� DÞ1þ2m

2Dð1þ 2mÞ � ð1þ DÞ1þm � ð1� DÞ1þm

2Dð1þ mÞ

 !2
24 351

2

f ð1Þ

m2

� �1
2

: ð5:6Þ
Eqs. (5.5) and (5.6) are analytical solutions of hPi and qP in terms of the 1pp and 2pp morphology, repre-
sented by D and k, respectively.

For comparison, we will also need the associated compliance probability density pS(S), which is found to
be:
pS ¼
1

2DS2
ðð1� DÞ�1

< S < ð1þ DÞ�1Þ
0 elsewhere

 !
: ð5:7Þ
Once pS is given, the average and variance of the compliance S are calculated:
hSi ¼
Z

SpSdS ¼ 1

2D
Ln

1þ D
1� D

� �
¼ 1:10814; hS2i ¼

Z
S2pS dS ¼ 1

1� D2
; ð5:8Þ

hS02i ¼ hS2i � hSi2 ¼ 1

1� D2
� 1

2D
Ln

1þ D
1� D

� �� �2

¼ 0:1419: ð5:9Þ
We now have the necessary morphological information needed to calculate the average and variance of the
buckling load on the basis of S (3.7) and K (3.12) by the FPM, or on the basis of h (4.20, 4.24) by the
OFPM. The averages are shown in Fig. 2, and are also compared to Monte Carlo Simulation by Zhang
and Ellingwood (1995). All results are normalized to PhKi, which is exact. For example
hPSi
P hKi

¼ hPSi
P hSi

P hSi

P hKi
¼ hPSihKi�1hSi�1 ¼ 0:902hPSi: ð5:10Þ
It is seen that while each of the solutions which are based on K or S are accurate only near very small or
very large k, the OFPM is accurate for the whole range. Note that although P(hSi) and P(hKi) are Ruess
and Voigt bounds for any k the 2pp-FPM results are not bounds for a specific k.

Fig. 3 shows similar comparisons for the COV(P). The differences between the FPM and the OFPM are
more pronounced, but the result is the same: the OFPM matches the MCS much better than previous
studies.
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6. Discussion and conclusions

The present study deals with two major subjects which are related to stochastically heterogeneous
structures, when the typical heterogeneity size is not negligible. One is how to find more accurately the aver-
age and variance of its macro response in terms of material morphology, and the other is how to define
effective material properties for finite size morphologies. A new Optimized Functional Perturbation
(OFPM) approach is introduced, based on finding the proper material property, with which to use the
FPM in order to eliminate (or minimize) the second order term in its functional series expansion. While
current optimization methods of finding effective properties are based on searching for the best value of
the homogeneous case (say, modulus S) around which to calculate the heterogeneous case, the OFPM looks
for the best function f(S). A unique feature of the OFPM is that f(S) depends on both morphology and
loading.



2358 E. Altus et al. / International Journal of Solids and Structures 42 (2005) 2345–2359
A 1D example of buckling of a heterogeneous beam has been solved in details, yielding an analytical
solution for f(S) in the form of a power law. It has been shown that while previous methods are capable
of producing solutions which are exact at one morphological extreme only, the OFPM is exact at
both very small and very large correlation lengths. Therefore, the accuracy at all ranges is improved,
as shown by comparing with previous numerical (Finite elements–Monte Carlo Simulations)
solutions.

Chapter (2) describes the method for a general 1D heterogeneous medium (elasticity, conductivity etc.,).
Therefore, (2.29) is a general governing equation for implementing the OFPM. It is expected that multidi-
mensional cases, where S is a tensor, will yield a similar form, although the practical calculations are more
involved. It is not clear, whether the power law form is valid for these cases too, although (2.29) suggests
that exploring this subject may be fruitful.
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Appendix A

Starting from the functional in Eq. (3.5),
UðP Þ ¼ P 2 ðS � ðwð1ÞÞ2ÞðS � ðwð2ÞÞ2Þ � S � ðwð1Þwð2ÞÞ2
� �

� P
p2

2
4S � ðwð1ÞÞ2 þ S � ðwð2ÞÞ2
� �

þ p4 ¼ 0:

ðA:1Þ
The first derivative of (A.1) with respect to h1 is:
U;h1 ¼ 2PP ;h1 S � ðwð1ÞÞ2
� �

S � ðwð2ÞÞ2
� �

� S � ðwð1Þwð2ÞÞ
� �2h i

þ P 2S1;h1 ðwð1Þ
1 Þ2 S � ðwð2ÞÞ2

� �
þ S � ðwð1ÞÞ2
� �

ðwð2Þ
1 Þ2 � 2 S � ðwð1Þwð2ÞÞ

� �
ðwð1Þ

1 wð2Þ
1 Þ

h i
� p2

2
P ;h1 4 S � ðwð1ÞÞ2

� �
þ S � ðwð2ÞÞ2
� �h i

� p2

2
PS1;h1 4ðwð1Þ

1 Þ2 þ ðwð2Þ
1 Þ2

h i
¼ 0; ðA:2Þ
where
h1 � hðx1Þ; P ;h1 ¼
dP
dh1

; S1;h1 ¼
dSðx1Þ
dh1

etc: ðA:3Þ
At h1 = hhi we obtain
P ;h1 jhhi ¼ �2p2
S;hjhhi
S jhhi2

ðwð1Þ
1 Þ2: ðA:4Þ
Note that although the derivative is at h = hhi, the above is still a function of x1.
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Similarly, the second derivative of (A.1) with respect to h2 is:
U;h1h2 ¼ 2ðP h2P ;h1 þ PP ;h1h2Þ S � ðwð1ÞÞ2
� �

S � ðwð2ÞÞ2
� �

� S � ðwð1Þwð2ÞÞ
� �2h i

þ 2PP ;h1S2;h2 ðwð1Þ
2 Þ2ðS � ðwð2ÞÞ2Þ þ S � ðwð1ÞÞ2

� �
ðwð2Þ

2 Þ2 � 2 S � ðwð1Þwð2ÞÞ
� �

wð1Þ
2 wð2Þ

2

� �h i
þ 2PP ;h2S1;h1 wð1Þ

1

� �2
ðS � ðwð2ÞÞ2Þ þ ðS � ðwð1ÞÞ2Þ wð2Þ

1

� �2
� 2½S � ðwð1Þwð2ÞÞ� wð1Þ

1 wð2Þ
1

� �� �
þ P 2S1;h1h1d12 ðwð1Þ

1 Þ2ðS � ðwð2ÞÞ2Þ þ ðS � ðwð1ÞÞ2Þ wð2Þ
1

� �2
� 2½S � ðwð1Þwð2ÞÞ� wð1Þ

1 wð2Þ
1

� �� �
þ P 2S1;h1S2;h2 ðwð1Þ

1 Þ2ðwð2Þ
2 Þ2 þ ðwð1Þ

2 Þ2ðwð2Þ
1 Þ2 � 2ðwð1Þ

2 wð2Þ
2 Þðwð1Þ

1 wð2Þ
1 Þ

h i
� p2

2
P ;h1h2 4ðS � ðwð1ÞÞ2Þ þ ðS � ðwð2ÞÞ2Þ

h i
� p2

2
P ;h1S2;h2 4ðwð1Þ

2 Þ2 þ ðwð2Þ
2 Þ2

h i
� p2

2
ðP ;h2S1;h1 þ PS1;h1h1d12Þ 4ðwð1Þ

1 Þ2 þ ðwð2Þ
1 Þ2

h i
; ðA:5Þ
where
P ;h1h2 ¼
dP

dh1dh2
; S1;h1h1 ¼

d2S1

dh21
� d2S

dh2
: ðA:6Þ
At h1 = h2 = hhi we obtain
P ;h1h2 jhhi ¼
d2P

dh1dh2

				
hhi

¼ 2p2

3Sjhhi3
S;h jhhi2 12 wð1Þ

1

� �2
wð1Þ

2

� �2
� 4 wð1Þ

1 wð2Þ
1

� �
wð1Þ

2 wð2Þ
2

� �� �
� 3SjhhiS;h1h1 jhhi wð1Þ

1

� �2
d12

� �
:

ðA:7Þ
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